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Abstract

In contrast to dichotomous item response theory (IRT) models, most well-known polyto-
mous IRT models do not imply stochastic ordering of the latent trait by the total test
score (SOL). This has been thought to make the ordering of respondents on the latent
trait using the total test score questionable, and throws doubt on the justi�ability of
using nonparametric polytomous IRT models for ordinal measurement. We show that a
broad class of polytomous IRT models has a weaker form of SOL, denoted weak SOL,
and argue that weak SOL justi�es ordering respondents on the latent trait using the total
test score, and, therefore, the use of nonparametric polytomous IRT models for ordinal
measurement.



3

In the social and behavioral sciences, tests and questionnaires are frequently used to
measure the position of respondents on a latent variable � (often called a latent trait).
In item response theory (IRT) it is assumed that � explains the association between the
item scores. An IRT model is used to model the item scores as a function of � and to
measure the respondents' � values. A special class of IRT models are nonparametric IRT
models (for an overview see, e.g., Junker & Sijtsma, 2001; Sijtsma & Molenaar, 2002).
A nonparametric IRT model consists of a set of weak assumptions about the relation
between the item scores and �. The idea is to obtain useful measurement properties with
as few restrictions on the data as possible. Let a test consist of J items each having
m+ 1 ordered answer categories, which are scored Xj = 0; 1; : : : ;m for j = 1; : : : ; J . For
dichotomous item scores (i.e., m = 1), this set of assumptions may be

Unidimensionality: � is unidimensional,

Local independence: The item scores are independent given �, and

Monotonicity: The probability of obtaining a score Xj = 1 given � = �, denoted
P (Xj = 1j�), is a nondecreasing function of � for all j

(e.g., see Sijtsma & Molenaar, 2002). Nonparametric IRT models that satisfy this set of
assumptions include the monotone homogeneity model and the double monotonicity model
(Mokken, 1971; also, see Sijtsma & Molenaar, 2002). Also, parametric IRT models, such
as the Rasch (1960) model and the two- and three-parameter logistic models (Birnbaum,
1968) satisfy this set of assumptions.

In nonparametric IRT, the total test score, X+ = PJj=1Xj, is used to measure a re-
spondent's � value. For dichotomous item scores, Grayson (1988; Huynh, 1994; �Unl�u,
2008; also see Ghurye and Wallace, 1959) showed that unidimensionality, local indepen-
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dence, and monotonicity imply monotone likelihood ratio of X+ in � (MLR), which is
de�ned as

P (X+ = Kj�A)
P (X+ = Cj�A) �

P (X+ = Kj�B)
P (X+ = Cj�B) ;

for 0 � C < K � Jm, and for any two respondents A and B with �A < �B. Monotone
likelihood ratio implies that � is stochastically ordered by X+ (Lehmann, 1959, p. 74);
that is,

P (� > tjX+ = C) � P (� > tjX+ = K) 8t; 0 � C < K � Jm: (1)

Equation 1 is referred to as a stochastic ordering of the latent trait by the total test score

X+ (SOL; Hemker, Sijtsma, Molenaar, & Junker, 1997). Grayson's result implies that if
unidimensionality, local independence, and monotonicity hold, it is reasonable to order
respondents on the latent variable � using the observable test score X+. For example, it
follows from Equation 1 that E(�jX+ = C) � E(�jX+ = K).

In general, Grayson's result does not hold for polytomously scored items (m > 1).
Hemker, Van der Ark, and Sijtsma (2001) provided the Venn diagram in Figure 1, showing
the hierarchical relationships among 17 IRT models for polytomously scored items. In
Figure 1, the nonparametric graded response model (np-GRM; Hemker et al., 1997; a.k.a.
the monotone homogeneity model for polytomously scored items; Molenaar, 1997) is the
most general model; it assumes unidimensionality, local independence, a special form
of monotonicity stating that P (Xj � xj�) is nondecreasing in � for j = 1; : : : ; J and
x = 1; : : : ;m. All other models depicted in Figure 1 imply these assumptions as well but
they also have additional assumptions.

Insert Figure 1 about here

Only the partial credit model (Masters, 1982) and special cases of this model (e.g., the
rating scale model, Andrich, 1978) imply SOL (Hemker et al., 1997, 2001). All other IRT
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models for polytomously scored items do not imply SOL. Hence, under well-known models
such as the generalized partial credit model (Muraki, 1992), the graded response model
(Samejima, 1969), the np-GRM, there was no theoretical justi�cation to order respondents
on � using X+. Su�cient conditions for SOL have been formulated for the generalized
partial credit model (Van der Ark, 2005), but these conditions are so restrictive that they
are unlikely to hold in practice. Van der Ark (2005) and DeMars (2008) used simulations
to study conditions under which SOL is violated.

To alleviate these problems, we propose to modify SOL (Equation 1) to a weaker
version, denoted weak SOL. Weak SOL holds if

P (� > tjX+ < K) � P (� > tjX+ � K) for all t and 0 < K � Jm: (2)

We have some remarks on the relation of weak SOL to SOL and other ordering prop-
erties. First, the stronger property SOL (Equation 1) implies weak SOL (Lemma 1;
Appendix). Second, weak SOL implies that E(�jX+ < K) � E(�jX+ � K) for
K = 1; : : : ; Jm (e.g., Shaked & Shantikumar, 1994, p. 4). Third, weak SOL is equiv-
alent to positive dependence in terms of global odds ratios, that is,

P (� > t;X+ � K)P (� � t;X+ < K)
P (� � t;X+ � K)P (� > t;X+ < K) � 1 for all t and 0 < K � Jm (3)

(Lemma 2, Appendix). Positive dependence in terms of global odds ratios was studied
by Douglas, Fienberg, Lee, Sampson, and Whitaker (1990) in the context of contingency
tables with ordinal variables. Fourth, a concept somewhat related to weak SOL was intro-
duced by Scheiblechner (2002; also, see Scheiblechner, 2007). He proposed the property
of monotone likelihood ordering (MLO). Let XiA and XiB denote the score of respondents
A and B on item i, respectively, then MLO is de�ned as

P (�A < �BjXiA < XiB) > P (�A > �BjXiA < XiB);
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for all pairs of respondents A and B and for i = 1; : : : ; J .
The main result of this note is a Theorem stating that the most general IRT model,

the np-GRM (see Figure 1), implies weak SOL (Equation 2). All other IRT models in
Figure 1 are a special case of the np-GRM (see Van der Ark, 2001, for an overview of
the proofs) and, therefore, a corollary of the Theorem is that all IRT models in Figure 1
imply weak SOL.

Theorem: The np-GRM implies weak SOL.

Proof: Hemker et al. (1997, Theorem 1) showed that the np-GRM implies stochastic
ordering of the manifest variable X+ by � (abbreviated SOM). SOM means that

P (X+ � Kj�) is nondecreasing in � for 0 � K � Jm: (4)

With I(:) the indicator function, let IK denote the binary random variable I(X+ � K) and
let fIK ;� denote the joint density of (IK ;�); this is a density with respect to the product
of counting measure and Lebesgue measure. Also, let fIK j� denote the conditional density
of IK given �. Then

Equation 4

() fIK j�(1j�B) � fIK j�(1j�A) 8�A < �B; 0 < K � Jm

() fIK j�(1j�B)
fIK j�(0j�B) �

fIK j�(1j�A)
fIK j�(0j�A) 8�A < �B; 0 < K � Jm

() fIK ;�(1; �B)
fIK ;�(0; �B) �

fIK ;�(1; �A)
fIK ;�(0; �A) 8�A < �B; 0 < K � Jm

() fIK ;�(1; �B)fIK ;�(0; �A) � fIK ;�(1; �A)fIK ;�(0; �B) 8�A < �B; 0 < K � Jm:(5)
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By integrating both sides over �A � t and �B > t, Equation 5 yields

P (X+ � K;� > t)P (X+ < K;� � t) � P (X+ < K;� > t)P (X+ � K;� � t);

for all t and for 0 < K � Jm; (6)

from which Equation 3 immediately follows. It follows from Lemma 2 (Appendix) that
Equation 3 is equivalent to weak SOL. �

A numerical example illustrates that under a particular item response theory models
SOL can be violated whereas weak SOL holds.

Example: The graded response model implies weak SOL but does not imply SOL. Assume
that the response probabilities of two trichotomous items are given by a graded response
model; that is,

P (Xj � xj�) = exp(�j(� � �jx))
1 + exp(�j(� � �jx))

for j = 1; 2 and x = 1; 2, with discrimination parameters �1 = 12 , and �2 = 2, and location
parameters �11 = �22 = 0, �12 = �1, and �21 = �5. Also, assume that � has a standard
normal density (we approximated the standard normal density by a histogram of 10001
equally sized intervals of � in the range [�5; 5]). Figure 2a shows the two item step
response functions P (Xj � xj�) for item 1 (solid line) and item 2 (dashed line). Figure 2b
shows conditional probabilities P (� > tjX+ = x+) as a function of t for x+ = 0 (dotted
line), x+ = 1 (dashed thin line), x+ = 2 (dashed line), x+ = 3 (solid line), and x+ = 4
(solid thick line). The lines in Figure 2b are nonincreasing by de�nition. An incorrect
ordering of the lines in terms of Equation 1 for at least some values of t indicates a vi-
olation of SOL. Figure 2b shows that SOL is violated because for almost all values of t
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(i.e., t 2 [�4:658; 4:993]), P (� > tjX+ = 2) > P (� > tjX+ = 3). The lines in Figures
2c, 2d, 2e, and 2f show P (� > tjX+ < K) (dashed line) and P (� > tjX+ � K) (solid
line) as functions of t. A violation of weak SOL would be indicated by an intersection.
Because the graded response model implies weak SOL, there are no intersections. Table
1 shows the values of E(�jX+ = K), E(�jX+ < K), and E(�jX+ � K). The expected
latent trait value is less for a respondent with X+ = 3 than for a respondent with X+ = 2
indicating a violation of SOL. Using weak SOL means comparing E(�jX+ < K), and
E(�jX+ � K) for K = 0; : : : ; 4. Note that E(�jX+ � 0) = E(�) = 0. Also note that
in this particular example E(�jX+ < K) and E(�jX+ � K) are increasing in K. In
general, this need not be true. �

Insert Figure 2 and Table 1 about here

The theorem shows that all popular nonparametric IRT models for polytomously
scored items can be used for ordinal person measurement; yet the ordering properties
are weaker than SOL or monotone likelihood ratio. The papers of Hemker et al. (1996,
1997, 2001), in which it was shown that nonparametric IRT models do not imply SOL
and monotone likelihood ratio, may have led to the belief that there is no justi�cation
for nonparametric IRT models for polytomous item scores. The theorem provides this
justi�cation. The di�erence between SOL and weak SOL in applications was illustrated
in the example. Whereas SOL allows ordering of the respondents' expected latent trait
values based on individual total test scores, weak SOL allows ordering of the expected
latent trait values for a high total test score group on the one hand and a low total test
score group on the other hand.
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Appendix

Lemma 1. SOL implies weak SOL.

Proof: Starting with SOL (Equation 1), we obtain:

SOL () P (� > tjX+ = C)
P (� � tjX+ = C) �

P (� > tjX+ = K 0)
P (� � tjX+ = K 0) 8t; 0 � C < K 0 � Jm

() P (� > t;X+ = C)
P (� � t;X+ = C) �

P (� > t;X+ = K 0)
P (� � t;X+ = K 0) 8t; 0 � C < K 0 � Jm

() P (� > t;X+ = C)P (� � t;X+ = K 0) �

P (� > t;X+ = K 0)P (� � t;X+ = C) 8t; 0 � C < K 0 � Jm

() P (X+ = K 0;� > t)P (X+ = C;� � t) �

P (X+ = C;� > t)P (X+ = K 0;� � t) 8t; 0 � C < K 0 � Jm:

Summing both sides of the latter inequality over C < K and K 0 � K yields Equation 6,
which implies weak SOL (see the lines below Equation 6). �

Lemma 2. Weak SOL and Equation 3 are equivalent.

Proof: We have

Equation 3 () P (� > t;X+ � K)
P (� � t;X+ � K) �

P (� > t;X+ < K)
P (� � t;X+ < K) 8t; 0 < K � Jm

() P (� > tjX+ � K)
P (� � tjX+ � K) �

P (� > tjX+ < K)
P (� � tjX+ < K) 8t; 0 < K � Jm

() P (� > tjX+ � K)
1� P (� > tjX+ � K) �

P (� > tjX+ < K)
1� P (� > tjX+ < K) 8t; 0 < K � Jm

() P (� > tjX+ � K) � P (� > tjX+ < K) 8t; 0 < K � Jm;

which is weak SOL. �
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Table 1: Values of E(�jX+ = K), E(�jX+ � K), and E(�jX+ > K) for K = 0; : : : ; 4
for the graded response model in the Example, rounded to three decimals. Violations of
SOL are printed in boldface.

K E(�jX+ = K) E(�jX+ < K) E(�jX+ � K)
0 �2:103 NA 0:000
1 �0:734 �2:103 0:001
2 0:233 �0:736 0:295
3 �0:125 �0:266 0:333
4 0:773 �0:226 0:773
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Figure captions

Figure 1: Venn diagram showing the hierarchical relationships among 17 polytomous IRT

models. The least restrictive model is the nonparametric graded response model (np-

GRM), the most restrictive models are the rating scale model (RSM), the sequential

rating scale model (SRSM), and a rating scale version of the restricted graded re-

sponse model (GRSM). Only the partial credit model (PCM) and the rating scale

model (RSM), which have been depicted with a shaded background, imply SOL.

Figure 2: Six plots illustrating weak SOL and a violation of SOL for two trichotomous

items under the graded response model. For details see text. (a) P (Xj � xj�)
as a function of �. (b) P (� > tjX+ = K) as a function of t for K = 0; : : : ; 4.
P (� > tjX+ < K) and P (� > tjX+ � K) as a function of t for K = 1 (c), K = 2
(d), K = 3 (e), and K = 4 (f).


